

Anwendungen mit AUTODESK® SIMULATION Mechanical 2016

Berechnung von Druckbehältern: Biege- und Membranspannung

Autodesk® Simulation Mechanical 2016 zur Analyse von:

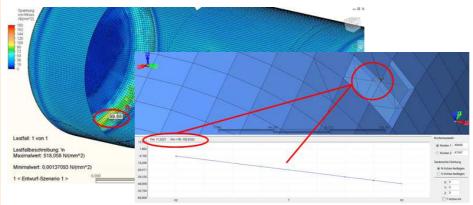
- Statischer und dynamischer Spannung linearer und nichtlinearer Werkstoffmodellen
- Schwingungen
- · Beulen und Knicken
- Stationäre und instationäre Wärmeübertragung
- Thermischer Spannung
- Mehrkörperdynamik
- Nichtlinearen Kontakten
- Elektrostatik
- Joule'sche Erwärmung
- Elektromechanik

Beurteilen Sie das Verhalten Ihrer Produkte noch vor der Fertigung mit

Autodesk Simulation Mechanical 2016

Aufgabe

Für den Betrieb von Druckbehälter in Kessel-, Tank- und Rohrleitungsanlagen muss nachgewiesen werden, dass die Bauteile allen auftretenden Belastungen standhalten. Dabei müssen Bewertungsvorgaben in den einschlägigen Regelwerken, wie z.B. das



Lasten und Randbedingungen

Vor allem die Druckverhältnisse müssen korrekt im Modell berücksichtigt werden. Dazu wirkt das Eigengewicht, ein Über- und/oder Unterdruck und eventuell ein hydrostatischer Druck als Folge einer innenliegenden Flüssigkeit.

Spannungen und Spannungslinearisierung

Die aus der Berechnung hervorgehende Vergleichsspannung (von Mises-Spannung) ist eines der Kriterien für die Beurteilung der Festigkeit des Behälters. Darüber hinaus sind jedoch auch die Biege- und Membranspannungen zu ermitteln. Hierfür kommt die in **Autodesk Simulation Mechanical verfügbare Spannungslinearisierung** zum Einsatz.

Erteilung der Betriebsgenehmigung

Die Anwendung der im Regelwerk (z.B. AD 2000) vorgesehenen Kriterien auf die mit **Autodesk Simulation Mechanical** berechneten Vergleichs-, Biege- und Membranspannungswerte zeigt, ob der Behälter die Belastungen standhalten. **Wenn ja, kann die für die Zulassung zuständige Stelle die Betriebsgenehmigung erteilen.**

e4e engineers for engineers GmbH Gronauer Strasse 33 60385 Frankfurt, Deutschland info@e4e-online.com

